The Missing Link Between DQO's and MQO's

Kevin Coats, Thomas Georgian, and <u>Chung-Rei Mao</u> HTRW Center of Expertise U.S. Army Corps of Engineers

12 May 2004

Is Site Contaminated?

Action Level (AL) = 100 ppm True PCB concentration = 70 ppm

Will correct decision be made based upon some measured value, X?

Yes, if $X = 70 \pm 20 (50 - 90)$ ppm.

Maybe not, if $X = 70 \pm 40 (30 - 110)$ ppm.

Data Uncertainty ⇒ **Decision Errors**

DQO/MQO Process

EPA QA/G-4: "Specify tolerable limits on decision errors which will be used as the basis for establishing the quantity and quality of data needed to support the decision."

$$DQO \stackrel{\textstyle >}{\Rightarrow} MQO \Rightarrow Method \Rightarrow Lab$$

Data Quality and Uncertainty

 H_0 : $X \ge AL$, H_A : X < AL, Decision Errors (α, β)

Gray Region Width, ∆

$$\Delta = AL - X_{\beta} = f$$
 (data quality, decision errors)

Data Quality and Decision Errors

 H_0 : $X \ge AL$, H_A : X < AL, Decision Errors ($\alpha = \beta = 0.05$)

 $X_{\beta} = AL - \Delta = AL - 4\sigma$, where $\sigma = std.$ dev. Site clean if $X < X_{\beta}$ but $QL \le DL = X_{\beta}$

$$DQO \Rightarrow MQO$$

- Requirement: $QL \leq DL(X_{\beta})$
- Project Inputs: DL (X_β)

Action Levels (regulatory/background level) Tolerable Decision Errors (α , β)

Lab Inputs: QL

Method Detection Limit (MDL)

Data Uncertainty (precision, bias)

Selection of Contract Labs

• Total Error
$$(\sigma) = \sqrt{\sigma_{Lab}^2 + \sigma_{Field}^2} \geq \sigma_{Lab} \approx \sigma_{LCS}$$

 Assumptions: Labs have different performance for precision, bias, and detection limits.

Lab A: MDL = 2 ppb, QL = 10 ppb,
$$\sigma_{LCS}$$
 = 5%. \$\$\$

Lab B: MDL = 4 ppb, QL = 20 ppb,
$$\sigma_{l,CS}$$
 = 10%.

Example 1: Lab A

DQO: Determine if organic contamination is greater than AL = 30 ppb with $\alpha = \beta = 0.05$.

<u>Lab A</u>: MDL = 2 ppb, σ_{LCS} = 5%. Acceptable?

$$X_{\beta} = AL - \Delta = AL - (4 \times \sigma \times AL) \approx 30 - (4 \times 5\% \times 30)$$

= 24 ppb \Rightarrow QL = 5 × MDL = 10 ppb

Example 2: Lab B

AL = 30 ppb,
$$\alpha = \beta = 0.05$$

<u>Lab B</u>: MDL = 4 ppb, σ_{LCS} = 10%. Acceptable?

$$X_{B} = 30 - (4 \times 10\% \times 30) = 18 \text{ ppb} < QL = 5 \times 4 = 20 \text{ ppb}$$

Example 3: Lab A with Large Bias

DQO: Determine if organic contamination is greater than AL = 30 ppb with α = β = 0.05.

Lab A: MDL = 2 ppb,
$$\sigma_{LCS}$$
 = 5%, R = 30%. Acceptable?

$$X_{\beta} = AL - \Delta = AL - (4 \times \sigma \times AL) \approx 30 - (4 \times 5\% \times 30)$$

= 24 ppb \Rightarrow 7 ppb \triangleleft QL = 5 × MDL = 10 ppb

LCS Control Chart (R, σ_R)

Water Matrix LCS Recoveries BTEX - 1997

Benzene

Estimated Uncertainty

$$U = \frac{C}{R/100} \times \left[\frac{t \times \sigma_{LCS}}{R} \right]$$

C = measured concentration

 \overline{R} = mean %LCS recovery

 $t = \text{Student's } t \text{ factor, } t_{(n-1,1-\alpha/2)}$

 σ_{LCS} = standard deviation of \overline{R} (%)

Example: Uncertainty for Ni Data

Lab: MDL = 10 ppb, LCS CLs = 75 - 105%. What is minimum $U_{95\%}$ of Ni at 200 ppb?

$$U_{95\%} = \frac{C}{\overline{R}/100} \times \left[1 \pm \frac{t \times \sigma_{LCS}}{\overline{R}}\right]$$

CLs = 90 ± 15%,
$$\overline{R}$$
 = 90%, σ_{LCS} = 5%

$$U_{95\%} \approx (200 \text{ ppb } / 0.9) \times [1 \pm 2 \times 5\% / 90\%]$$

 $\approx 222 \pm 25 \text{ ppb}$

Issues or Concerns

- Bias Correction
- Matrix Interferences
- Field Errors
- Consistent Lab Operations
- Regulatory Acceptance

Summary

- Simple and practical approach for determining the minimum MQOs based on DQOs.
- Useful tool for screening contract labs prior to contract award.
- Estimate the lower bound of laboratory data uncertainty.
- Need consistency in determining and reporting MDL and LCS control limits.
- Need regulatory acceptance.

